產(chǎn)品目錄
  • 細(xì)胞培養(yǎng)進(jìn)口血清
    進(jìn)口胎牛血清
    進(jìn)口新生牛血清
    進(jìn)口豬血清
    馬血清
  • 支原體檢測盒及標(biāo)準(zhǔn)品
    常規(guī)PCR檢測試劑盒
    熒光定量PCR檢測(qPCR法)
    支原體DNA提取
    靈敏度標(biāo)準(zhǔn)品(方法驗證用)
    特異性標(biāo)準(zhǔn)品(方法驗證用)
    PCR定量標(biāo)準(zhǔn)品(可用于方法驗證)
  • 支原體祛除試劑
    細(xì)胞中支原體祛除
    環(huán)境支原體祛除
    水槽支原體祛除
  • 干細(xì)胞培養(yǎng)基
  • DNA/RNA污染祛除
    DNA/RNA污染祛除試劑
    DNA污染監(jiān)測
  • RNA病毒研究試劑
    RNA病毒檢測試劑盒
    病毒RNA提取
  • PCR儀器及配套產(chǎn)品
    DNA污染監(jiān)測祛除
    PCR/qPCR儀性能檢查
    PCR試劑
    PCR試劑盒
    PCR預(yù)混液(凍干粉)
    熱啟動聚合酶MB Taq DNA
  • 微生物PCR檢測
    食品檢測類產(chǎn)品
    食品微生物檢測
    細(xì)菌PCR檢測
歡迎來到 威正翔禹|締一生物官方網(wǎng)站|咨詢熱線:400-166-8600
咨詢熱線
400-166-8600

產(chǎn)品目錄
  • 細(xì)胞培養(yǎng)進(jìn)口血清
    進(jìn)口胎牛血清
    進(jìn)口新生牛血清
    進(jìn)口豬血清
    馬血清
  • 支原體檢測盒及標(biāo)準(zhǔn)品
    常規(guī)PCR檢測試劑盒
    熒光定量PCR檢測(qPCR法)
    支原體DNA提取
    靈敏度標(biāo)準(zhǔn)品(方法驗證用)
    特異性標(biāo)準(zhǔn)品(方法驗證用)
    PCR定量標(biāo)準(zhǔn)品(可用于方法驗證)
  • 支原體祛除試劑
    細(xì)胞中支原體祛除
    環(huán)境支原體祛除
    水槽支原體祛除
  • 干細(xì)胞培養(yǎng)基
  • DNA/RNA污染祛除
    DNA/RNA污染祛除試劑
    DNA污染監(jiān)測
  • RNA病毒研究試劑
    RNA病毒檢測試劑盒
    病毒RNA提取
  • PCR儀器及配套產(chǎn)品
    DNA污染監(jiān)測祛除
    PCR/qPCR儀性能檢查
    PCR試劑
    PCR試劑盒
    PCR預(yù)混液(凍干粉)
    熱啟動聚合酶MB Taq DNA
  • 微生物PCR檢測
    食品檢測類產(chǎn)品
    食品微生物檢測
    細(xì)菌PCR檢測

利用微生物培養(yǎng)基的景觀來預(yù)測新的有機(jī)體媒體配對

2016-09-27 14:39

The most frequently altered compounds in this way are the biologically common ions/salts, followed by trace metals and vitamins. This lends further evidence that these trace components play key roles in differentiating growth between close species, and thus should be considered in future media design.

Beyond these analyses, we examine broad trends in compound usage across phyla at different taxonomic levels. Heat maps of enrichment of different taxonomic groups for media components can be found in Supplementary Figs 4–8 and Supplementary Note 3.

Media usage follows phylogenetic and ecological trends

An implicit assumption that investigators make when trying to cultivate new microorganisms is that the best medium to start with is one from a phylogenetic or ecological neighbour. Despite its apparent logic, this assumption has not, to our knowledge, been rigorously tested and validated. To do this, we mapped organisms in DSMZ to operational taxonomic units in Greengenes ecological data as clustered into environments (see Methods for details; clustering in ref. 20), and also to taxonomic classifications from the Interactive Tree of Life project (Itol21). We find that, indeed, the likelihood that two organisms share at least one lab medium strongly correlates with both their ecological and phylogenetic similarity (see Fig. 3; ρ=0.76, P=2.3e?13, and ρ=0.92, P=1.3e?3, respectively, for ecological and phylogenetic similarities, as determined by cohabitation Jaccard index (ecological) or inverse subtree count in the iTOL taxonomic tree (phylogenetic); see Methods for details). This indicates that phylogenetic and ecological closeness are good heuristics for determining the likelihood that two organisms have successfully been grown in the same lab medium. Indeed, we show later that this is not just descriptive of what has been done in the past, but that it holds a signal that can be used predictively for deriving new successful organism–media pairings. Importantly, the fractions of organism pairs sharing lab media listed in Fig. 3 are likely underestimates, as the organism-by-media matrix in KOMODO is highly underpopulated (see previous section). This observation is indeed upheld when we perform new growth experiments, as most of our predictions (which were not listed previously in KOMODO) yield growth.

文章引自:nature.com;版權(quán)聲明:版權(quán)歸原作者所有,如有版權(quán)問題,請與我們聯(lián)系。




上一頁
...
7 8 9 下一頁
龙井市| 武威市| 伊金霍洛旗| 金寨县| 乌海市| 吴堡县| 芜湖县| 洪洞县| 宁夏| 贞丰县| 香河县| 临沧市| 常州市| 扎赉特旗| 金塔县| 凤城市| 青田县| 渭南市| 榆社县| 伊川县| 毕节市| 拉孜县| 即墨市| 三明市| 瑞丽市| 朝阳区| 重庆市| 大关县| 中卫市| 历史| 邯郸市| 泸溪县| 平谷区| 隆化县| 富源县| 顺平县| 嘉峪关市| 梅河口市| 万州区| 龙泉市| 大庆市|